Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Commun ; 14(1): 2799, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2327022

ABSTRACT

Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.


Subject(s)
Breakthrough Infections , COVID-19 , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Reinfection , United Kingdom/epidemiology , Vaccination
2.
Am J Epidemiol ; 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2228089

ABSTRACT

Estimating real-world vaccine effectiveness is vital to assess the COVID-19 vaccination programme and to inform the ongoing policy response. However, estimating vaccine effectiveness using observational data is inherently challenging because of the non-randomised design and potential for unmeasured confounding. We used a Regression Discontinuity Design (RDD) to estimate vaccine effectiveness against COVID-19 mortality in England using. the fact that people aged 80 or over were prioritised for the vaccine roll-out. The prioritisation led to a large discrepancy in vaccination rates in people 80-84 compared to those 75-79 at the beginning of the vaccination campaign. We found a corresponding difference in COVID-19 mortality, but not in non-COVID-19 mortality, suggesting that our approach appropriately addresses the issue of unmeasured confounding factors. Our results suggest that the first vaccine dose reduced the risk of COVID-19 death by 52.6% (95% Cl 26.6-84.2) in those aged 80, supporting existing evidence that a first dose of a COVID-19 vaccine has a strong protective effect against COVID-19 mortality in older adults. The RDD estimate of vaccine effectiveness is only slightly lower to previously published studies using different methods, suggesting that these estimates are unlikely to be substantially affected by unmeasured confounding factors.

3.
Open Forum Infect Dis ; 9(9): ofac464, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2042636

ABSTRACT

We investigated long COVID incidence by vaccination status in a random sample of UK adults from April 2020 to November 2021. Persistent symptoms were reported by 9.5% of 3090 breakthrough severe acute respiratory syndrome coronavirus 2 infections and 14.6% of unvaccinated controls (adjusted odds ratio, 0.59 [95% confidence interval, .50-.69]), emphasizing the need for public health initiatives to increase population-level vaccine uptake.

4.
Nat Commun ; 13(1): 3748, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1908182

ABSTRACT

Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out in many settings, there is a need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity. We evaluate whether a single vaccination in individuals who have already been infected with SARS-CoV-2 generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single vaccination with ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults median (50 (IQR: 37-63) years) receiving at least one vaccination, 13,404 (13.3%) had serological/PCR evidence of prior infection. Prior infection significantly boosted antibody responses, producing higher peak levels and/or longer half-lives after one dose of all three vaccines than those without prior infection receiving one or two vaccinations. In those with prior infection, the median time above the positivity threshold was >1 year after the first vaccination. Single-dose vaccination targeted to those previously infected may provide at least as good protection to two-dose vaccination among those without previous infection.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
5.
BMJ ; 377: e069676, 2022 05 18.
Article in English | MEDLINE | ID: covidwho-1896046

ABSTRACT

OBJECTIVE: To estimate associations between covid-19 vaccination and long covid symptoms in adults with SARS-CoV-2 infection before vaccination. DESIGN: Observational cohort study. SETTING: Community dwelling population, UK. PARTICIPANTS: 28 356 participants in the Office for National Statistics COVID-19 Infection Survey aged 18-69 years who received at least one dose of an adenovirus vector or mRNA covid-19 vaccine after testing positive for SARS-CoV-2 infection. MAIN OUTCOME MEASURE: Presence of long covid symptoms at least 12 weeks after infection over the follow-up period 3 February to 5 September 2021. RESULTS: Mean age of participants was 46 years, 55.6% (n=15 760) were women, and 88.7% (n=25 141) were of white ethnicity. Median follow-up was 141 days from first vaccination (among all participants) and 67 days from second vaccination (83.8% of participants). 6729 participants (23.7%) reported long covid symptoms of any severity at least once during follow-up. A first vaccine dose was associated with an initial 12.8% decrease (95% confidence interval -18.6% to -6.6%, P<0.001) in the odds of long covid, with subsequent data compatible with both increases and decreases in the trajectory (0.3% per week, 95% confidence interval -0.6% to 1.2% per week, P=0.51). A second dose was associated with an initial 8.8% decrease (95% confidence interval -14.1% to -3.1%, P=0.003) in the odds of long covid, with a subsequent decrease by 0.8% per week (-1.2% to -0.4% per week, P<0.001). Heterogeneity was not found in associations between vaccination and long covid by sociodemographic characteristics, health status, hospital admission with acute covid-19, vaccine type (adenovirus vector or mRNA), or duration from SARS-CoV-2 infection to vaccination. CONCLUSIONS: The likelihood of long covid symptoms was observed to decrease after covid-19 vaccination and evidence suggested sustained improvement after a second dose, at least over the median follow-up of 67 days. Vaccination may contribute to a reduction in the population health burden of long covid, although longer follow-up is needed.


Subject(s)
COVID-19 , Adult , COVID-19/complications , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Female , Humans , Male , Middle Aged , RNA, Messenger , SARS-CoV-2 , Vaccination , Post-Acute COVID-19 Syndrome
6.
Clin Infect Dis ; 74(7): 1208-1219, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1704072

ABSTRACT

BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Immunoglobulins , Incidence , Longitudinal Studies , Vaccination
7.
Clin Infect Dis ; 74(3): 407-415, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684538

ABSTRACT

BACKGROUND: How severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity varies with viral load is incompletely understood. Whether rapid point-of-care antigen lateral flow devices (LFDs) detect most potential transmission sources despite imperfect clinical sensitivity is unknown. METHODS: We combined SARS-CoV-2 testing and contact tracing data from England between 1 September 2020 and 28 February 2021. We used multivariable logistic regression to investigate relationships between polymerase chain reaction (PCR)-confirmed infection in contacts of community-diagnosed cases and index case viral load, S gene target failure (proxy for B.1.1.7 infection), demographics, SARS-CoV-2 incidence, social deprivation, and contact event type. We used LFD performance to simulate the proportion of cases with a PCR-positive contact expected to be detected using 1 of 4 LFDs. RESULTS: In total, 231 498/2 474 066 (9%) contacts of 1 064 004 index cases tested PCR-positive. PCR-positive results in contacts independently increased with higher case viral loads (lower cycle threshold [Ct] values), for example, 11.7% (95% confidence interval [CI] 11.5-12.0%) at Ct = 15 and 4.5% (95% CI 4.4-4.6%) at Ct = 30. B.1.1.7 infection increased PCR-positive results by ~50%, (eg, 1.55-fold, 95% CI 1.49-1.61, at Ct = 20). PCR-positive results were most common in household contacts (at Ct = 20.1, 8.7% [95% CI 8.6-8.9%]), followed by household visitors (7.1% [95% CI 6.8-7.3%]), contacts at events/activities (5.2% [95% CI 4.9-5.4%]), work/education (4.6% [95% CI 4.4-4.8%]), and least common after outdoor contact (2.9% [95% CI 2.3-3.8%]). Contacts of children were the least likely to test positive, particularly following contact outdoors or at work/education. The most and least sensitive LFDs would detect 89.5% (95% CI 89.4-89.6%) and 83.0% (95% CI 82.8-83.1%) of cases with PCR-positive contacts, respectively. CONCLUSIONS: SARS-CoV-2 infectivity varies by case viral load, contact event type, and age. Those with high viral loads are the most infectious. B.1.1.7 increased transmission by ~50%. The best performing LFDs detect most infectious cases.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Child , Family Characteristics , Humans , Viral Load
8.
Nat Med ; 28(5): 1072-1082, 2022 05.
Article in English | MEDLINE | ID: covidwho-1684095

ABSTRACT

Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2-3 months after two ChAdOx1 doses, for 5-8 months after two BNT162b2 doses in those without prior infection and for 1-2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , Male
9.
N Engl J Med ; 386(8): 744-756, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1604758

ABSTRACT

BACKGROUND: Before the emergence of the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination reduced transmission of SARS-CoV-2 from vaccinated persons who became infected, potentially by reducing viral loads. Although vaccination still lowers the risk of infection, similar viral loads in vaccinated and unvaccinated persons who are infected with the delta variant call into question the degree to which vaccination prevents transmission. METHODS: We used contact-testing data from England to perform a retrospective observational cohort study involving adult contacts of SARS-CoV-2-infected adult index patients. We used multivariable Poisson regression to investigate associations between transmission and the vaccination status of index patients and contacts and to determine how these associations varied with the B.1.1.7 (alpha) and delta variants and time since the second vaccination. RESULTS: Among 146,243 tested contacts of 108,498 index patients, 54,667 (37%) had positive SARS-CoV-2 polymerase-chain-reaction (PCR) tests. In index patients who became infected with the alpha variant, two vaccinations with either BNT162b2 or ChAdOx1 nCoV-19 (also known as AZD1222), as compared with no vaccination, were independently associated with reduced PCR positivity in contacts (adjusted rate ratio with BNT162b2, 0.32; 95% confidence interval [CI], 0.21 to 0.48; and with ChAdOx1 nCoV-19, 0.48; 95% CI, 0.30 to 0.78). Vaccine-associated reductions in transmission of the delta variant were smaller than those with the alpha variant, and reductions in transmission of the delta variant after two BNT162b2 vaccinations were greater (adjusted rate ratio for the comparison with no vaccination, 0.50; 95% CI, 0.39 to 0.65) than after two ChAdOx1 nCoV-19 vaccinations (adjusted rate ratio, 0.76; 95% CI, 0.70 to 0.82). Variation in cycle-threshold (Ct) values (indicative of viral load) in index patients explained 7 to 23% of vaccine-associated reductions in transmission of the two variants. The reductions in transmission of the delta variant declined over time after the second vaccination, reaching levels that were similar to those in unvaccinated persons by 12 weeks in index patients who had received ChAdOx1 nCoV-19 and attenuating substantially in those who had received BNT162b2. Protection in contacts also declined in the 3-month period after the second vaccination. CONCLUSIONS: Vaccination was associated with a smaller reduction in transmission of the delta variant than of the alpha variant, and the effects of vaccination decreased over time. PCR Ct values at diagnosis of the index patient only partially explained decreased transmission. (Funded by the U.K. Government Department of Health and Social Care and others.).


Subject(s)
BNT162 Vaccine , COVID-19/transmission , ChAdOx1 nCoV-19 , Disease Transmission, Infectious/prevention & control , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , England , Female , Humans , Male , Middle Aged , Retrospective Studies , Viral Load
10.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: covidwho-1577032

ABSTRACT

BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Subject(s)
Cross Infection , Influenza, Human , Nanopores , Antiviral Agents/therapeutic use , Cross Infection/diagnosis , Cross Infection/drug therapy , Drug Resistance , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Metagenome , Neuraminidase/genetics , Seasons , United Kingdom
12.
Nat Commun ; 12(1): 6250, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493099

ABSTRACT

Understanding the trajectory, duration, and determinants of antibody responses after SARS-CoV-2 infection can inform subsequent protection and risk of reinfection, however large-scale representative studies are limited. Here we estimated antibody response after SARS-CoV-2 infection in the general population using representative data from 7,256 United Kingdom COVID-19 infection survey participants who had positive swab SARS-CoV-2 PCR tests from 26-April-2020 to 14-June-2021. A latent class model classified 24% of participants as 'non-responders' not developing anti-spike antibodies, who were older, had higher SARS-CoV-2 cycle threshold values during infection (i.e. lower viral burden), and less frequently reported any symptoms. Among those who seroconverted, using Bayesian linear mixed models, the estimated anti-spike IgG peak level was 7.3-fold higher than the level previously associated with 50% protection against reinfection, with higher peak levels in older participants and those of non-white ethnicity. The estimated anti-spike IgG half-life was 184 days, being longer in females and those of white ethnicity. We estimated antibody levels associated with protection against reinfection likely last 1.5-2 years on average, with levels associated with protection from severe infection present for several years. These estimates could inform planning for vaccination booster strategies.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antibody Formation/physiology , Bayes Theorem , Female , Humans , Immunoglobulin G/metabolism , Male , Middle Aged , SARS-CoV-2/immunology
13.
J Infect ; 84(1): 40-47, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487846

ABSTRACT

Objective To describe the impact of the SARS-CoV-2 pandemic on the incidence of paediatric viral respiratory tract infection in Oxfordshire, UK. Methods Data on paediatric Emergency Department (ED) attendances (0-15 years inclusive), respiratory virus testing, vital signs and mortality at Oxford University Hospitals were summarised using descriptive statistics. Results Between 1-March-2016 and 30-July-2021, 155,056 ED attendances occurred and 7,195 respiratory virus PCRs were performed. Detection of all pathogens was suppressed during the first national lockdown. Rhinovirus and adenovirus rates increased when schools reopened September-December 2020, then fell, before rising in March-May 2021. The usual winter RSV peak did not occur in 2020/21, with an inter-seasonal rise (32/1,000 attendances in 0-3 yr olds) in July 2021. Influenza remained suppressed throughout. A higher paediatric early warning score (PEWS) was seen for attendees with adenovirus during the pandemic compared to pre-pandemic (p = 0.04, Mann-Witney U test), no other differences in PEWS were seen. Conclusions SARS-CoV-2 caused major changes in the incidence of paediatric respiratory viral infection in Oxfordshire, with implications for clinical service demand, testing strategies, timing of palivizumab RSV prophylaxis, and highlighting the need to understand which public health interventions are most effective for preventing respiratory virus infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Child , Communicable Disease Control , Hospitals, Teaching , Humans , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , United Kingdom
14.
Nat Med ; 27(12): 2127-2135, 2021 12.
Article in English | MEDLINE | ID: covidwho-1469978

ABSTRACT

The effectiveness of the BNT162b2 and ChAdOx1 vaccines against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections requires continuous re-evaluation, given the increasingly dominant B.1.617.2 (Delta) variant. In this study, we investigated the effectiveness of these vaccines in a large, community-based survey of randomly selected households across the United Kingdom. We found that the effectiveness of BNT162b2 and ChAdOx1 against infections (new polymerase chain reaction (PCR)-positive cases) with symptoms or high viral burden is reduced with the B.1.617.2 variant (absolute difference of 10-13% for BNT162b2 and 16% for ChAdOx1) compared to the B.1.1.7 (Alpha) variant. The effectiveness of two doses remains at least as great as protection afforded by prior natural infection. The dynamics of immunity after second doses differed significantly between BNT162b2 and ChAdOx1, with greater initial effectiveness against new PCR-positive cases but faster declines in protection against high viral burden and symptomatic infection with BNT162b2. There was no evidence that effectiveness varied by dosing interval, but protection was higher in vaccinated individuals after a prior infection and in younger adults. With B.1.617.2, infections occurring after two vaccinations had similar peak viral burden as those in unvaccinated individuals. SARS-CoV-2 vaccination still reduces new infections, but effectiveness and attenuation of peak viral burden are reduced with B.1.617.2.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Humans , Middle Aged , Polymerase Chain Reaction , United Kingdom/epidemiology , Vaccination , Viral Load , Young Adult
15.
Clin Infect Dis ; 73(3): e699-e709, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1387800

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS: We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS: Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19-31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81-90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSIONS: SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , Bayes Theorem , Health Personnel , Humans , Immunoglobulin G , Seroepidemiologic Studies
16.
Nat Microbiol ; 6(9): 1140-1149, 2021 09.
Article in English | MEDLINE | ID: covidwho-1320232

ABSTRACT

We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged >60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a 'low responder' group that more commonly consisted of people aged >75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged >60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Cohort Studies , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/genetics , United Kingdom , Young Adult
17.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: covidwho-1305889

ABSTRACT

Background: Information on SARS-CoV-2 in representative community surveillance is limited, particularly cycle threshold (Ct) values (a proxy for viral load). Methods: We included all positive nose and throat swabs 26 April 2020 to 13 March 2021 from the UK's national COVID-19 Infection Survey, tested by RT-PCR for the N, S, and ORF1ab genes. We investigated predictors of median Ct value using quantile regression. Results: Of 3,312,159 nose and throat swabs, 27,902 (0.83%) were RT-PCR-positive, 10,317 (37%), 11,012 (40%), and 6550 (23%) for 3, 2, or 1 of the N, S, and ORF1ab genes, respectively, with median Ct = 29.2 (~215 copies/ml; IQR Ct = 21.9-32.8, 14-56,400 copies/ml). Independent predictors of lower Cts (i.e. higher viral load) included self-reported symptoms and more genes detected, with at most small effects of sex, ethnicity, and age. Single-gene positives almost invariably had Ct > 30, but Cts varied widely in triple-gene positives, including without symptoms. Population-level Cts changed over time, with declining Ct preceding increasing SARS-CoV-2 positivity. Of 6189 participants with IgG S-antibody tests post-first RT-PCR-positive, 4808 (78%) were ever antibody-positive; Cts were significantly higher in those remaining antibody negative. Conclusions: Marked variation in community SARS-CoV-2 Ct values suggests that they could be a useful epidemiological early-warning indicator. Funding: Department of Health and Social Care, National Institutes of Health Research, Huo Family Foundation, Medical Research Council UK; Wellcome Trust.


Subject(s)
COVID-19 Testing , COVID-19/virology , SARS-CoV-2 , Viral Load , Humans
18.
Nat Med ; 27(8): 1370-1378, 2021 08.
Article in English | MEDLINE | ID: covidwho-1263502

ABSTRACT

The effectiveness of COVID-19 vaccination in preventing new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general community is still unclear. Here, we used the Office for National Statistics COVID-19 Infection Survey-a large community-based survey of individuals living in randomly selected private households across the United Kingdom-to assess the effectiveness of the BNT162b2 (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca; ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30; as a surrogate for viral load) and gene positivity pattern (compatible with B.1.1.7 or not). Using 1,945,071 real-time PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021, we found that vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 d after the first dose (61% (95% confidence interval (CI) = 54-68%) versus 66% (95% CI = 60-71%), respectively), with greater reductions observed after a second dose (79% (95% CI = 65-88%) versus 80% (95% CI = 73-85%), respectively). The largest reductions were observed for symptomatic infections and/or infections with a higher viral burden. Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of a difference between the BNT162b2 and ChAdOx1 vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology
19.
Clin Microbiol Infect ; 27(10): 1516.e7-1516.e14, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1260697

ABSTRACT

OBJECTIVES: We investigated determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer-BioNTech or Oxford-AstraZeneca vaccines. METHODS: HCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing prior to first and second vaccination, and 4 weeks post-vaccination if receiving a 12-week dosing interval. Quantitative post-vaccination anti-spike antibody responses were measured using the Abbott SARS-CoV-2 IgG II Quant assay (detection threshold: ≥50 AU/mL). We used multivariable logistic regression to identify predictors of seropositivity and generalized additive models to track antibody responses over time. RESULTS: 3570/3610 HCWs (98.9%) were seropositive >14 days post first vaccination and prior to second vaccination: 2706/2720 (99.5%) were seropositive after the Pfizer-BioNTech and 864/890 (97.1%) following the Oxford-AstraZeneca vaccines. Previously infected and younger HCWs were more likely to test seropositive post first vaccination, with no evidence of differences by sex or ethnicity. All 470 HCWs tested >14 days after the second vaccination were seropositive. Quantitative antibody responses were higher after previous infection: median (IQR) >21 days post first Pfizer-BioNTech 14 604 (7644-22 291) AU/mL versus 1028 (564-1985) AU/mL without prior infection (p < 0.001). Oxford-AstraZeneca vaccine recipients had lower readings post first dose than Pfizer-BioNTech recipients, with and without previous infection, 10 095 (5354-17 096) and 435 (203-962) AU/mL respectively (both p < 0.001 versus Pfizer-BioNTech). Antibody responses >21 days post second Pfizer vaccination in those not previously infected, 10 058 (6408-15 582) AU/mL, were similar to those after prior infection followed by one vaccine dose. CONCLUSIONS: SARS-CoV-2 vaccination leads to detectable anti-spike antibodies in nearly all adult HCWs. Whether differences in response impact vaccine efficacy needs further study.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , BNT162 Vaccine , COVID-19/blood , ChAdOx1 nCoV-19 , Female , Health Personnel , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Male , Middle Aged , Vaccination
20.
Appl Health Econ Health Policy ; 19(4): 521-535, 2021 07.
Article in English | MEDLINE | ID: covidwho-1118292

ABSTRACT

BACKGROUND: In the UK, consultations for prescription medicines are available via private providers such as online pharmacies. However, these providers may have lower thresholds for prescribing certain drugs. This is a particular concern for antibiotics, given the increasing burden of antimicrobial resistance. Public preferences for consultations with online providers are unknown, hence the impact of increased availability of online consultations on antibiotic use and population health is unclear. OBJECTIVE: To conduct a discrete choice experiment survey to understand UK public preferences for seeking online consultations, and the factors that influence these preferences, in the context of having symptoms for which antibiotics may be appropriate. METHODS: In a survey conducted between July and August 2018, general population respondents completed 16 questions in which they chose a primary care consultation via either their local medical centre or an online provider. Consultations were described in terms of five attributes, including cost and similarity to traditional 'face-to-face' appointments. Choices were modelled using regression analysis. RESULTS: Respondents (n = 734) placed a high value on having a consultation via their local medical centre rather than an online provider, and a low value on consultations by phone or video. However, respondents characterised as 'busy young professionals' showed a lower strength of preference for traditional consultations, with a higher concern for convenience. CONCLUSION: Before COVID-19, the UK public had limited appetite for consultations with online providers, or for consultations that were not face-to-face. Nevertheless, prescriptions from online providers should be monitored going forward, particularly for antibiotics, and in key patient groups.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , COVID-19 , Patient Preference/psychology , Patient Preference/statistics & numerical data , Referral and Consultation/statistics & numerical data , Telemedicine/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Surveys and Questionnaires , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL